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ABSTRACT 

s s f  ovER 
Characteristics of waves in a two-component cold plasma are reviewed. 

Using the Clemmcw-Mullaly-Allis diagram, the topological types of the 

wave-normal surfaces are shown. 

initially given by Allis, is explained. Reversal in the polarization in 

the electric field is examined, and all the modes in which the reversal 

occurs are specified. There is no polarization reversal in ULJ? to VLF 

waves in the magnetosphere. The lower hybrid resonance frequency in the 

magnetosphere is discussed. 

A consistent system of labeling the modes, 

The equations of motion for an electromagnetic ray are derived. 

Defining the action for the ray in analogy with that for a particle in 

classical mechanics, the principle of least action is proved. It is shown 

that if the dispersion relation is homogeneous in the wave vector and the 

frequency, the principle of least action implies the principle of least 

tine, i.e., Fermat's principle. 

as is the case with Alfvin compressional waves, the trajectory of a ray 

can be determined from a variational equation, from which the problem can 

be formulated in Hamiltonian form. For the axially symmetric case, the 

generalized momentum conjugate to the azimuthal coordinate is a constant 

of moticn. Using this relation, "allowed" and "forbidden" regions are 

defined, when a set cf initial conditions for the ray is given. This 

method is applied to a model magnetosphere with a dipole magnetic field. 

It is shown that the accessibility of hydromagnetic rays originating from 

the boundary of the magnetosphere to the earth is greatly limited. For a 

When the principle of least time holds, 



ii 

3 35’6s’ 
distorted magnetosphere the canonical equations for a hydromagnetic ray 

are integrated by a numerical method. Typical trajectories in the 

equatorial plane are shown, and the effects of the 

dipole field on the ray trajectories are discussed. 

I 



1. Introduction 

Hydromagnetic waves can be derived by a low-frequency approximation in 

a general scheme of treating plasma waves. For a complete understanding of 

the characteristics of hydromagnetic waves it is desirable to review plasma 

waves in general for the entire range of frequency and for all possible 

values of plasma parameters. 

Clemow and Mullaly (1954) presented a comprehensive study of the 

dependence of the phase refractive index n, derived by the Appleton-Hartree 

approximation, on the angle 8 which the direction of phase propagation makes 

with that of the magnetic field. These authors developed a systematic 

method of investigating the topological genera of the (n,8) surface. Allis 

(1959), and Allis, Buchsbaum, and Bers (1963) modified the scheme by using 

the wave-normal surface which is obtained by inverting the (n,8) surface 

about the origin. Stix (1962) has given an excellent summary of the wave- 

normal surface topology for waves in a cold plasma. In Sections 2.1 to 2.9 

we will follow Stix's representation. 

Stix (1962) called a diagram showing topological genera of the wave- 

normal surfaces for various regions ir? plasma parameter space the "Clenunow- 

Mullaly-Allis diagram", or, in short, the "CMA diagram" The CMA diagram 

for an idealized two-component cold plasma is presented in Section 2.4, and 

the characteristics of modes for different regions in p asma parameter 

space are reviewed. The labeling of modes by the sense of polarization, 

i.e., "right-handed" or "left-handed", for the propagation parallel to the 

magnetic field, or by "ordinary" or "extraordinary" mode according as the 

refractive index for the propagation perpendicular to the magnetic field is 
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independent or dependent on the magnetic field is explained using the 

CMA diagram. 

In Section 2 . 6  the wave-normal surface topology in those regions in 

the CMA diagram that are relevant to ULF and VLF waves in the magnetosphere 

is studied. 

Reversal of the polarization in the electric field that may occur for 

8 not equal to 0 is examined in detail (Section 2 . 7 ) ,  and the lower hybrid 

resonance frequency in the magnetosphere is presented (Section 2 . 8 ) .  

In Sections 3.1 to 3 . 3  geometrical electromagnetics, or ray theory, 

is formulated, and in Sections 3 . 4  to 3 . 8  the theory is applied to the 

propagation of hydromagnetic waves in the magnetosphere. 

Analogy between the Hamiltonian form of classical mechanics and 

geometrical electromagnetics is demonstrated (Sections 3.2, 3 . 3 ,  3 . 4 ) ,  and 

validity of Fermat's principle in geometrical electromagnetics is examined 

(Section 3.3). 

action is established. It is then shown that if the dispersion relation 

is homogeneous in ff and w ,  the principle of least action implies the 

principle of least time, i.e., Fermat's principle. This is the same result 

as that obtained by Weinberg (1962) by the eikonal theory. 

The action is defined for a ray, and the principle of least 

By formulating the ray theory in Hamiltonian form it is shown 

(Section 3 . 5 )  that when the magnetic field and the plasma are axially 

symmetric, and when the wave-normal surface is spherical, the generalized 

momentum conjugate to the azimuthal coordinate is a constant of motion. 

Applying this result to the propagation of hydromagnetic waves in a dipole 
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model magnetosphere (Section 3.5), we will define, for a set of initial 

conditions of a ray, "forbidden" and "allowed" regions for the ray in the 

same manner as Stormer (1953) did for a charged particle moving in a 

dipole magnetic field. 

maximum at an altitude of several thousand kilometers above ground the 

It will be shown that because of the Alfv6n velocity 

accessibility of hydromagnetic rays generated in the outer regions of the 

magnetosphere to the immediate vicinity of the earth is very limited. 

When the magnetic field is not axially symmetric, the canonical 

equations must be integrated. In Section 3 .8  we will present examples of 

hydromagnetic ray trajectories computed by numerical method for a model 

magnetosphere that takes into account the distortion of the dipole field by 

edlar wind. 

Sectiorl 3 . 8 ;  more detailed discussions will be given in a separate paper. 

Trajectories in the equatorial plane alone are presented in 

2.  Propagation of hydromagnetic waves 

2.1. The dispersion relation 

The dispersion relation for waves in a cold plasma in a uniform 

magnetic field has been given by ;str& (1950), Sitenko and Stepanov (1957) 

and Allis (1959). Here we only outline the derivation of the dispersion 

relation; for the details, see, e.g., Stix (1962). 
3 

We assume that in the unperturbed state the magnetic field Bo and the 
+ 

plasma are static and uniform, and we take Bo and the quantities character- 

izing the plasma to be zero-order quantities. The perturbation B in the 

magnetic field, the electric field E, the current and the particle velocities 

+ 

+ 
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are considered to be first-order variables, and the relevant equations are 

all linearized by ignoring second- and higher-order terms. The first-order 

variables are assumed to change as exp i (k-r -Ut). 
+ +  

Considering the displacement current to be the sum of that in vacuum 

and the plasma current, and by Fourier analysis the electric displacement 

D can be expressed in the form 
+ 

+ 
thus defining the dielectric tensor K .  

-9 
The expression for D and Maxwell’s equations yield the following 

dispersion relation in terms of the refractive index n: 

A n4 - B n2 + c = o 
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Here the  subsc r ip t  k r e f e r s  t o  the  p a r t i c l e  of type k whose mass and charge 

are mk and q 

t h e  plasma frequency and the  cyclotron frequency f o r  t he  k- th  cons t i t uen t ;  

r e spec t ive ly ,  and c i s  the ve loc i ty  of  l i g h t ;  TT and f ik a r e  k’ 

k merely s p e c i f i e s  the  s ign of the  charge. 

2 .2 .  The wave-normal sur face  

When a l l  the  plasma parameters and the frequency W a r e  spec i f i ed ,  n i s  a 

func t ion  of  8,  t he  angle between the  s t a t i c  magnetic field$o and the  wave 

vec tor  k .  

phase v e l o c i t y ,  measured i n  u n i t s  of c y  i n  the  d i r e c t i o n  of phase propagation. 

3 + - 2  
Denoting the  u n i t  vec tor  i n  the d i r e c t i o n  of k by k,  k/n gives  the  

We def ine  the wave-normal sur face  by revolving about the  d i r e c t i o n  of 
4 i? 

the  magnetic f i e l d  Bo the  locus of  the  ti;, of the  vec tor  k/n when 8 i s  

changed from 0 t o  77; s ince  the  magnetic f i e l d  3rd the  plasma are assumed t o  

be  uniform, a t  each poin t  i n  space :he wave-mrmal sur face  i s  a x i a l l y  

s - m e t r i c  about the  d i r e c t i o n  of the  magretic f i e l d .  Thus the  topological  

na ture  of t he  wave-normal sur face  i s  determlzced by the  dependence of n on 8. 

From the  dependence of the  c c e f f i c i t & s  A and B i n  (1) on 8 as indica ted  

i n  (2) i t  i s  obvious t h a t  t he  wave-normal s-rface i s  symmetric with respec t  

t o  the  plane through the  c r i g i n  a:? normal t r J  the magnetic fFeld;  namely, 

n ((3) = n (n - 8 ) .  

The so lu t ions  of (1) are  

n2 = (B 5 F)/(2A) 

where 

F~ = (RI, - PSI 2 4  s i n  0 + P 2 (R - L!) 2 2  cos 
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There a r e  two b ranches  i n  n2, and f o r  real  v a l u e s  o f  8 ,  n i s  e i t h e r  p u r e  

real  o r  pu re  imaginary .  

The s o l u t i o n s  f o r  n2  f o r  p r o p a g a t i o n  a t  8 = 0 ( p a r a l l e l  t o  t h e  

magnet ic  f i e l d )  and 8 = 4lt ( p e r p e n d i c u l a r  t o  t h e  magnet ic  f i e l d )  r educe  

t o  t h e  f o l l o w i n g  s imple  e x p r e s s i o n s .  

For 8 = 0 ,  

n2 = R 

2 n = L  

and f o r  8 = %lT , 

( 4 )  

(5) 

n2 = P (7 )  

It can be  shown t h a t  f o r  8 = 0 ,  t h e  p o l a r i z a t i o n  of t h e  e l e c t r i c  

f i e l d  f o r  t h e  branch  w i t h  n2 = R i s  c i r c u l a r  and r igh t -handed  and t h a t  

f o r  t h e  branch  n 2  = I, a l s o  c i r c u l a r  b u t  l e f t - h a n d e d .  

For 8 = , t h e  phase  v e l o c i t y  f o r  t h e  branch  wit.h n.2 g iven  by (6)  

depends on t h e  magnet ic  f i e l d ,  whereas  t h a t  f o r  t h e  branch  r e p r e s e n t e d  by 

( 7 )  i s  independent:  of t h e  magnet ic  f i e l d .  

These c h a r a c t e r i s t i c s  a t  6 = 0 arid 8 = 3-:77 w i l l  b e  used l a t e r  f o r  

l a b e l i n g  t h e  modes. 

To stt.idjr t h e  shape of t h e  wave-normal s i i r f n c e  i t  i.s import:ant t o  

know where n2 becomes 0 o r  i n f i n i t y .  

p o s i t i v e  to n e g a t i v e  , t h e n  n bcc.cmes imaginary  an,!. hence t h e  waxre becomes 

e v a w s c e n t  . 

For i n s t a n c e ,  i f  n2 c ~ c s s e s  0 frnm 
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Equation (1) shows t h a t  n2 = 0 i s  a so lu t ion  only i f  C = 0, 

namely, i f  

P = 0, o r  R = 0,  o r  L = 0. (8) 

Then the  phase ve loc i ty  i s  i n f i n i t e .  

The o the r  case ,  n2 = Woccurs  when A = 0; from (2) we  see t h a t  t h i s  

happens when 8 s a t i s f i e s  the  r e l a t i o n  

(9) 2 tan  8 = - P/S 

Thus, i f  P and S are of opposi te  s ign ,  then a t  8 s a t i s f y i n g  (9) and a l s o  

a t  7 T -  8 ,  n2 is i n f i n i t e  and the  phase ve loc i ty  i s  zero. 

happens, n2 i s  zero a t  no o ther  real 8 .  

and a t  8 = %TT 

When t h i s  

A t  8 = 0 ,  n2 i s  00 when S = - + 60 , 
, n2 i s m w h e n  S = 0. 

A circumstance i n  which n2 = 0 i s  ca l led  a cu tof f  and t h a t  i n  which 

n2 = 00 a resonance ( A l l i s ,  1959). 

and 8 = 4iSr 

A l l i s  c a l l s  the  resonances a t  8 = 0 

the  p r inc ipa l  resonances. 

From ( 4 )  and ( 5 )  we see that a t  8 = 0 ,  n L  a , when R = 2 00, o r  

L = - + a3 . The d e f i n i t i o n s  i n  (2) show t h a t  t he  case R = 5 00 corresponds 

t o  e l ec t ron  cyclotron resonance and the  case L = 200 t o  ion  cyclotron 

resonance. Indeed, the  po la r i za t ion  of the  e l e c t r i c  f i e l d  i n  each case can 

be shown t o  be i n  the  same d i r e c t i o n  a s  t h a t  of gyrat ion of the  respec t ive  

p a r t i c l e .  

The resonance a t  8 = %IT , corresponding t o  S = 0 ,  i s  ca l l ed  the  

hybrid resonance; t he re  are two branches i n  the  so lu t ion  t o  S = 0 ,  and 

according t o  the  frequency, t he  two resonances are c a l l e d  t h e  upper and 
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the lower hybrid resonances. The lower hybrid resonance will be discussed 

in Section 2.8. 

In the limit 8 4  0 and P +  0, a resonance may or may not result, 

depending upon the path of approach to this double limit (Stix, 1962). 

The topological characteristics of the wave-normal surfaces can be 

classified into three categories. If n is positive for all real values of 

8 ,  the wave-normal surface is topologically equivalent to a sphere. 

2 

As we have seen, if P and S are of opposite sign, there is a resonance 

at QreS satisfying (9). In this case, if n2 is positive for 0 < 8 < QreS, 
and for 8 S P and negative for Qres< 8 < 77 - QreS, the wave- 

normal surface is equivalent to a dumbbell-shaped lemniscoid. If the sign 

of n2 in these regions is reversed, the wave-normal surface is equivalent 

to a wheel-shaped lemniscoid. 

7T - QreS< 

2.3. Plasma parameter space 

2 To determine the wave-normal surfaces for the two branches of n 

certain parameters of the plasma must be specified. Equations (1) and 

(2) indicate that the wave-normal surfaces are uniquely determined when 

the ratios n k / w  

we imagine 2k-dimensional space with 2k mutually orthogonal axes 

representing n k / w  and n k / w  , the wave-normal surfaces for the two 

branches of n2 can be assigned to every point in this plasma parameter 

space. However, if we specify fixed parameters, such as ratios of number 

densities of different types of particles, and mass ratios, the minimum 

number of coordinate axes required is reduced. 

andfik/W(and Ek) are specified for all k. Thus, if 
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To be specific in our representation we now limit ourselves to a 

neutral cold plasma consisting of electrons and hydrogen ions. 

the plasma frequencies and the cyclotron frequencies for electrons and 

We denote 

ions by affixing subscript e or i to 77 and n. 
The quantities R, L, and P defined in (2) are then reduced to much 

simpler expressions: 

P =  1 - a (12) 

where 

Since Qe/ ai = mi/me =j.t , is a fixed parameter, we see that two- 
dimensional parameter space, i.e., a plane, suffices for our purpose. 

Following Allis (1959) and Stix (1962) we take Q:/ W 

o( as abscissa; we are only concerned with the quadrant bounded by the 

positive axes. 

2 as ordinate and 

2.4. The Clemow-Mullaly-Allis diagram 

We now divide this plasma parameter plans into bounded areas by 

curves representing the principal resonances and cutoffs. To make the 

bounding curves reasonably separated from each other it is helpful to 
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t a k e  t h e  i o n - t o - e l e c t r o n  mass r a t i o  t o  b e  smaller t h a n  i t s  a c t u a l  v a l u e .  

Fol lowing A l l i s  and S t i x ,  we  t a k e p  t o  be  4 f o r  o u r  i l l u s t r a t i v e  purpose .  

By examining t h e  wave-normal s u r f a c e s  i n  t h e  manner d e s c r i b e d  i n  t h e  

F 

preced ing  S e c t i o n  i t  can be shown t h a t  t h e  t o p o l o g i c a l  t ype  of each  o f  t h e  

wave-norma1 s u r f a c e s  f o r  t h e  two b ranches  remains  t h e  same th roughou t  each  

o f  t h e  bounded areas. 

The CMA diagram c o n s t r u c t e d  i n  t h i s  way i s  shown i n  F i g u r e  1. I n  each  

o f  t h e  bounded a r e a s  t h e  t o p o l o g i c a l  t y p e s  of t h e  wave-normal s u r f a c e s  f o r  

t h e  two branches  are i n d i c a t e d .  Wherever o n l y  one wave-normal s u r f a c e  i s  

drawn, the mode co r re spond ing  t o  t h e  o t h e r  b ranch  i s  e v a n e s c e n t ,  and i n  t h e  

area t o  t h e  r i g h t  o f  t h e  cu rve  L = 0 and below t h e  h o r i z o n t a l  l i n e  R = 00 

b o t h  branches  are evanescen t .  

The cu rve  f o r  RL - PS = 0 i s  drawn i n  w i t h  broken  l i n e s .  T h i s  cu rve  

r e p r e s e n t s  n e i t h e r  c u t o f f  n o r  r e s o n a n c e ,  b u t  i t  p roves  t o  be u s e f u l  i n  

l a b e l i n g  t h e  modes. 

A s  w e  have seen  i n  S e c t i o n  2.2 t h e  p o l a r i z a t i o n  i n  t h e  e l ec t r i c  f i e l d  

i s  e i t h e r  r igh t -handed  o r  l e f t - h a n d e d  a t  8 = 0. The wave-normal s u r f a c e s  

i n  F igu re  1 a r e  l a b e l e d  R o r  L on t o p  of each  s k e t c h  a c c o r d i n g  as t h e  

p o l a r i z a t i o n  a t  8 = 0 i s  r i g h t - h a n d e d  o r  l e f t - h a n d e d ,  r e s p e c t i v e l y .  

Fo r  t h e  p ropaga t ion  a c r o s s  t h e  magnet ic  f i e l d ,  i . e . ,  8 = f n  , we 

found t h a t  n 2  f o r  one of t h e  two b ranches  depends on t h e  magnet ic  f i e l d  

and t h a t  n2 f o r  t h e  o t h e r  b ranch  i s  independent  o f  t h e  magnet ic  f i e l d .  

A l l i s  (1959) termed t h e  mode w i t h  n 2  dependent  on t h e  magnet ic  f i e l d  

" e x t r a o r d i n a r y "  mode and t h e  mode w i t h  n2  independent  on t h e  magnet ic  f i e l d  

~~~ 
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"ordinary" mode. We follow Allis' nomenclature, and wherever the 

propagation in this direction (8  = .fin ) is possible, the symbol 0 or X 

is attached to the right of each sketch of the wave-normal surface, 

according as the mode is "ordinary" or "extraordinary". 

This system of labeling the modes seems to be most systematic and 

is recommended for the general use to eliminate confusion that has 

existed in the past. 

As we shall see in Section 2.9, for frequencies much less than the 

ion cyclotron frequency the wave-normal surface for the mode labelec with 

R and X in Figure 1 becomes a sphere, that is, n2 is independent of 8 .  

For this reason Astrgm (1950) called this mode "ordinary" and the other 

"extraordinary", and Astrcm's nomenclature has been used widely in the 

literature dealing with hydromagnetic waves. However, this labeling is 

not consistent with Allis' system. Since the spherical wave-normal surface 

in question is merely an approximation valid only for frequencies well 

below the ion cyclotron frequency, Allis' system seems to be preferable. 

0 

0 

As is evident in Figure 1, a right-handed (or left-handed) mode at 

8 = 0 may be either an ordinary o r  extraordinary mode at 8 = ~ T T  , and 

hence labeling the modes with only one label R or L, or 0 or X is not 

adequate. 

It is also noted that the polarization in the electric field may 

reverse its direction in some regions in the plasma parameter plane 

(Stix, 1962). This problem will be discussed in detail in Section 2.7. 

The two modes can be distinguished by still another labeling method. 

The two modes are labeled "fast" or "slow" by comparing the size of the 
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wave-normal surfaces. There can be no crossing of the wave-normal surfaces 

for the two branches so that the labeling with "fast" or "slow" mode can be 

made unambiguously. Wherever only one branch is nonevanescent, it is 

reasonable to assume that the wave-normal surfaces change continuously in the 

plasma parameter plane and to label that mode consistently with the naming 

of the corresponding mode in the neighboring bounded areas where a comparison 

of two modes is possible. 

2.5. A model magnetosphere 

In Section 2.6 a CMA diagram for ULF and VW waves in the magnetosphere 

will be presented. 

and also for all the discussions of hydromagnetic waves in the later Sections 

is described in this Section. 

The model magnetosphere to be used for the CMA diagram 

We approximate the earth's magnetic field by a dipole except in Section 

3 . 8  where the distortion of the dipole field due to solar wind is taken into 

account. 

The electron density distribution in the magnetosphere adopted here is 

based on the recent determination by Liemohn and Scarf (1964) using nose 

whistlers. Among the electron density distributions which these authors 

considered to give self-consistent results, we adopt the simplest distribution, 

namely, the model in which the electron density is inversely proportional to 

the distance from the earth's center. Their results apply to the region of 

the magnetosphere approximately from 3 to 5 earth-radii. We assume that this 

inverse cube law for the electron density holds in regions below and above 
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these altitudes. 

varies as No(a/r) 

distance to the boundary of the magnetosphere which is taken to be at 

103; here 

electrons/cm3 (Liemohn and Scarf , 1964). 

To be precise, we assume that the electron density 

on the equatorial plane from 15,000 km geocentric 3 

4 is the radius of the earth and No is taken to be 1.41 x 10 

For altitudes below the bottom limit of the above distribution 

(15,000 km geocentric distance) we base our model on that given by 

Dessler, Francis, and Parker (1960), but to ensure continuity of the 

electron density we apply smoothing. 

km was divided into two regions and in each region the electron density 

was expressed in a power series. At the boundary between the two regions 

and at 15,000 km geocentric distance, the electron density and its first 

derivative with respect to radial distance are made continuous. The 

density was expressed analytically for the convenience for the numerical 

calculations required later in the ray treatment. 

In so doing the region below 15,000 

Figure 2 shows the electron density distribution constructed in the 

manner described above and used throughout this paper. The distribution 

given in Figure 2 refers to that in the equatorial plane, but we assume 

that the electron density is a function of radial distance alone. 

Figure 3 shows the electron plasma frequency and the electron 

cyclotron frequency as functions of geocentric distance. The former is 

assumed to be spherically symmetric, but the latter, of course, varies 

with latitude. 
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2.6. The CMA diagram for ULF and VLF waves in the magnetosphere 

Having obtained in Section 2 . 3  the wb.ole view of the CMA diagram 

f e r  an idealized plasma in which the ion-to-electron mass ratio is taken 

to be 4 ,  we now ask  what regions in the plasma parameter plane are 

relevant to propagation of ULF and VLF waves in the magnetosphere. We 

will now take the actual value for the hydrogen-ion-to-electron mass 

P ratio 

2 
e 

In Section 2 . 3  we took and fi / w as coordinates, but the 

conditions that are of interest to us now make it more convenient to 

use ne/W as abscissa and ae/U as ordinate. 
A CMA diagram for ULF and VLF with these coordinate a x e s  is shorn. 

in Figure 4 .  The diagram can be used in two ways. If the frequencyw is 

specified, the change in the plasma parameters with distance frGm the 

earth's center (for instance, on the equatorial plane) can be represented 

by a curve along which the radial distance is marked. 

Alternatively, if a position in the magnetosphere is specified, a 

continuous change in the wave frequency at that position car. be 

represented by a continuous curve in the CMA diagram. 

For the sake of  convenience we take the former representation. Ir 

Figure 4 ,  curves are drawn for frequencies from 0.01 c/sec to 10 kc/sec. 

Since the plasma parameter variations with radial distance are the same 

for all frequencies, curves for different frequencies can be obtained 

from one of them by merely displacing it parallel to a fixed straight line. 

Since the magnetic field varies with latitude, the curves drawn in 
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Figure 4 for the equatorial plane will be changed at higher latitudes, 

but the changes are only slight because of the logarithmic scale in 

the diagram, and the general features which are discussed below will 

not be altered appreciably. 

First, we observe that for waves with frequencies below about 

1 c/sec, two modes are possible. One has a wave-normal surface 

topologically equivalent to a sphere; its electric field has right-handed 

circular polarization at 8 = 0 ,  and the mode is "extraordinary" at 8 = %v; 

this mode is the "fast" mode. 

has a wave-normal surface topologically equivalent to a dumbbell-shaped 

lemniscoid, and its electric field has left-handed circular polarization 

at 8 = 0 .  

to Alfvgn compressional wave and the latter to Alfv&n shear wave. It is 

the latter mode that Alfvgn (1942) originally derived by treating plasma 

as a conducting fluid. 

The other mode, which is the "slow" mode, 

In the hydromagnetic approximation the former mode corresponds 

In the frequency range approximately from 1 c/sec to 100 c/sec, ion 

cyclotron resonance takes place at some altitude, and above this altitude 

only the fast mode can propagate. (We are ccncerned here only with 

altitudes above several hundred kilometers above ground level.) 

For each frequency in the racge from several tens cycles/sec to 

several kilocycles/sec, the lower hybrid resonance (at 8 = %lT , and 

S = 0 )  is encountered at a certain altitude, and above that altitude the 

wave-normal surface is transformed to a dumbbell-shaped lemniscoid; 

propagation across the magnetic field becomes impossible. The mode 
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prevailing at frequencies above the lower hybrid resonance frequency 

is the "whistler" mode. 

As we go to still higher frequeccies we reach electron cyclotron 

resonance, and the whistler mode is destroyed. If we cross the cutoff 

L = 0 from right to left in Figure 4 ,  we have one or two modes, according 

as the frequency is above or below the electron cyclotron resonance. 

the latter case the slow mode represents the whistler mode. 

In 

2.7. Polarization reversal 

In this Section we examine polarization at 0 not equal to zero. In 

Section 2.4 we already mentioned the possibility of reversal of polarization. 

Stix (1962) showed that for one of the branches the polarization of the 

electric field chaEges direction of rotation at 8 satisfying the relation 

Clearly, for this reversal of polarization to take place at real 8 ,  

P and S must be of the same sign and IP/Sl < 1. Even these conditions 

are both satisfied, the reversal may occur in an evanescent branch. Thus 

it is worthwhile examining the problem in detail. 

From the conditicn that P and S are of the same sign we can eliminate 

about one half of the bsurzded areas in the CMA diagram. By the second 

condition, namely, that IP/Sl < 1, ?art. of the remaining areas are further 

eliminated. In Figure 5 ,  areas where polarization reversal cannot occur 

are shaded; signs of P and S are indicated by a small symbol + or - .  The 
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coordinates in Figure 5 are the same as in Figure 1, and the ion-to- 

electron mass ratio is again taken to be 4 ;  this is just for schematical 

representation, and our discussion in this Section applies to the case in 

whichp is taken to be the actual ion-to-electron mass ratio. The 

horizontal line at n2/ 
= /A corresponds to fi2 = (r, 2 , i.e. , ion e i 

cyclotron resonance. Another horizontal line at 

an important role in the following discussions. This comes about from the 

fact that P - S has the factor fi2/ W 

2/ d 2  =p2 -A+ 1 plays e 

- ( p 2  - / A +  1) in the numerator. e 

F o r p  > 1, p2 - J& + 1 is less than JL2 and is greater than 1. It can be 

+ 1 is the ordinate (n2/ W 2, for the intersection of 
e shown that 

P = 0 and S = 0, and that the curve RL - PS = 0 intersects the a:/ f.U 

axis at p2 - /v- + 1. 
From Figure 5 it is already clear that the reversal can never occur in 

the magnetosphere in waves with frequencies below the ion cyclotron frequency. 

Next we examine in which branch the polarization reversal takes place, 

if it does at all, without limiting ourselves to the conditions of our 

immediate interest. 

By examining the polarization of the electric field it can be shown 

that if the polarization reversal occurs, then it does so in the branch 

that comes from the positive sign in (3 )  when RL + PS - 2s 2 is negative, 

and in the branch from the negative sign in (3)  when this quantity is 

positive. 

It is, therefore, instructive to locate the solution to the equation 

RL + PS - 2s2 = 0 (15) 
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The left-hand side of (15) can be written as follows: 

RL+PS - 
+ 
- 

where 

The expression on the right-hand side of (16) can also be written as 

Though the latter expression is convenient to determinect when x2 is 

given, we will use (16) to obtain the solution to (15). From (16) we see 

that x2 = 0 is a solution of (15), which, however, is of no interest to us. 

We now examine the solution of the equation that is obtained by 

equating the content of the square brackets in (16) to zero. Since the 

equation so obtained is cubic in x2, we can determine the number of real 

roots by examining the discriminant. This method is helpful in locating 

the solutions. 

For >> and x2 not very much greater in order of magnitude 

than /L, x2 becomes independent of a , and we have two positive roots: 

or 2 P  x2 = y - 2  ( 1 - 21p ) 
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thus, giving two positive roots for x 

Numerically, these are approximately 1835.50 and 60.64, respectively. 

There are three positive real roots (x2 satisfying (15)) for 

positive o( less than 0.175. 

negative real root. Foro( greater than 5.835 there are two positive 

real roots and one negative real root. 

to - + 0.005.) 

Between 0.175 and 5.835 there is only one 

(The numbers quoted are accurate 

The curves representing (15) are schematically shown in Figure 6; 

the sign for RL + PS - 2S2 is also indicated for areas separated by the 

curves . 
We now combine the results in Figures 5 and 6. In so doing we 

observe that the intersection of R =OO and L = 0 

We see that all the unshaded areas in Figure 5 where the polarization 

reversal can occur are in the regions where RL + PS - 2S2 is negative. 

Thus the reversal occurs in the branch resulting from the plus sign in (3). 

We reach the conclusion that there is no polarization reversal in 

is at o(= 2(1 - l/p)< 2. 

the nonevanescent modes to the right of the vertical line O(= 1, and 

that for Nless than 1 the polarization reversal occurs in the L-X mode 

for U 2  < a2 and in the R-0 or R-X mode for f l 2  (l-l/,u+ 1/p2)<d< a’. 
1 1 e 

The mode in which the polarization reversal occurs are indicated in 

Figure 7, which summarizes the discussions given in this Section. 

We conclude that for ULF and VLF waves ic the magnetosphere the 

polarization reversal at 8 satisfying (14 )  does not occur. 
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2 . 8 .  Tile lower hybrid resonance 

We see from (6) that for propagation across the magnetic field, 

i.e., for 0 = $lT , there is resonance at S = 0 .  As is indicated in 

Figures 1 and 4 ,  there are two such resonances, and the one at lower 

frequency is called the lower hybrid resonance and the other at higher 

frequency the upper hybrid resonance. 

Approximate expressions for the two hybrid resonance frequencies 

can be obtained by ignoring terms of order p-l compared with unity in 
the dispersion relation for 0 = %T . 
hybrid resonance frequency uLH 

Stix (1962) gives for the lower 

and for the upper hybrid resonance frequency uUH 

In the frequency range we are concerned here and for the plasma 

parameters appropriate to the magnetosphere the lower hybrid resonance 

frequency can be approximated to a good accuracy by the geometric mean 

of the ion and electron cyclotron frequencies: 

A clear physical picture for this resonance was given by Auer, 

Hurwitz, Jr., and Miller (1958). 
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The lower hybrid resonance frequency in the magnetosphere at 

different distances from the earth’s center is given in Table 1. 

Table 1. The lower hybrid resonance frequency fLH at various 

distances from the center of the earth. 

LH r 

clsec km 
5 260 10 ’ 000 

15 000 

20 ’ 000 

25 000 

30 , 000 

35,000 

40 000 

45 000 

50 ’ 000 

55 000 

60,000 

1,560 

65 7 

337 

195 

123 

82 

58 

42 

32 

24 

2.9. The hydromagnetic approximation 

When the wave frequency w i s  well below the ion cyclotron frequency 

a i ,  the quantities R and L in (10) and (11) are simplified and both 

R and L can be approximated by 1 + , where i= 4 7Tp c2/ Bo2; here 

p = ni m + n m i.e., the plasma density. With these approximations i e e’ 
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for R and L the dielectric tensor defined in Section 2.1 becomes diagonal. 

The component K1 cf the dielectric tensor perpendicular to the magnetic 

field then takes the well-known form (Spitzer, 1956) 

If a i s  large, as is the case with ULF waves in the magnetosphere, 

P in (12) can be approximated by -o( . With these approximations for 

R, L, and P the dispersion relation is simplified and readily factored, 

giving the following two modes. One of these modes gives 

and the other 

(21) 4 2 n2 cos e = 1 + 

In the first mode n2 is independent of 0 .  For this reason 

istrb'm (1950) called this mode "ordinary" mode, and the second 

"extraordinary" mode. However, a closer examination shows that the 

first mode corresponds to the branch labeled R-X in Figure 4 anc 

second to that labeled L. 

first mode depends on the magnetic field far 8 = %Tr . 
of labeling the modes has already been discussed in Section 2.4. 

the 

Heme the exact expression for n2 for the 

The problem 

By studying the i on  velocitj the mode corresponding to (20) can 

be shown to represent compressional wave, and the other mode (21) 

shear wave. 
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~ 

From a comparison of phase velocity for these two modes one finds 

that the compressional mode is the fast mode and that the shear mode is 

the slow mode. 

From the continuity of the wave-normal surface we see that the i 
Alfvgn compressional mode (or the fast hydromagnetic mode) and the 

whistler mode belong to the same family. The Alfvgn shear mode (or the 

slow hydromagnetic mode) disappears at the ion cyclotron frequency. 

When J>> 1 the phase velocities for the compressional and shear 

I 
1 modes recude to V and V cos 8 ,  respectively, where V = Bo/ q/w , A A A 

I which is usually called the Alfvgn velocity. The condition that t7> 
~ 

1 is equivalent to the condition that VA/c << 1. 

These approximations for the phase velocities can be readily 

obtained by a fluid-dynamical treatment of plasma with infinite 

conductivity and by neglecting displacement cfirrent. 
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3. Ray theory 

3.1. Introduction 

So far we have reviewed the wave modes in a cold plasma by studying 

the wave-normal surfaces. The basis for the study was the dispersion re- 

lation. We now investigate propagation of hydromagnetic waves from a 

somewhat different angle by constructing a ray theory. A s  the plane wave 

theory described in the preceding Sections has limitations in its appli- 

cation, the ray theory developed in the following Sections is valid only 

under certain conditions. However, just as the general discussions of 

wave modes are useful in understanding the propagation of waves, the 

theoretical study of the behavior of rays may be helpful in understanding 

some of the electromagnetic phenomena occuring in the magnetosphere. 

Although the theoretical discussions in Sections 3 . 2  and 3 . 3  are 

of general nature, the theory is applied in Sections 3 . 4  tu’ 3 . 8  to pro- 

pagation of hydromagnetic waves in the magnetosphere. 

3.2. The equations of motion of a ray 

The basis of the theory is that the ray propagates with the group 

velocity. Hines (1951) and Auer, Hurwitz, Jr., and Miller (1958) have 

shown that the constructive interference maximum of a wave packet moves 

with the group velocity. 

constituting the wave packet propagate is the same throughout its 

motion in the anisotropic medium. Coupling between different modes is 

assumed not to take place. 

We also assume that the mode in which the waves 
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Denoting t h e  p o s i t i o n  of a r a y  by ? a n d  t h e  g roup  v e l o c i t y  by Pg, w e  

w r i t e  t h e  e q u a t i o n  of motion f o r  t h e  ray as f o l l o w s .  

+ +  r = vg (22) 

where t h e  d o t  s i g n i f i e s  d i f f e r e n t i a t i o n  w i t h  t i m e  t .  

3 i s  g i v e n  by 

The group v e l o c i t y  

g 

--* 
The wave f r equency  W and t h e  wave v e c t o r  k are r e l a t e d  by t h e  d i s p e r -  

s i o n  r e l a t i o n  which w e  w r i t e  

+ -b 
D (  k ,  U ,  r ,  t 1 = 0 

We i n t r o d u c e  a p a r a m e t e r r  a l o n g  t h e  p a t h  of t h e  r a y .  Then, u s i n g  

( 2 3 )  and ( 2 4 1 ,  t h e  e q u a t i o n  of motion (22) can be w r i t t e n  i n  t h e  f o l l o w i n g  

form. 

df*/dT - - - -- b Dlbi? (25) 
d t / d r  a D / a  w 

From o u r  assumption D i s  c o n s t a n t  a long t h e  t r a j e c t o r y ,  and hence w e  

have 

dD d t  
d r  a ?  dT a t  d Z  

S D = < =  b D  . d? dt+- bD *+* . &  + -  - )  = o  (26) 

F o r  (26)  t o  ho ld  f o r  a n y T  t h e  c o n t e n t  i n  t h e  p a r e n t h e s e s  must be 

z e r o .  We group t h e  f o u r  terms i n  t h e  p a r e t h e s e s  i n  (26) as f o l l o w s :  



- 26 - 

I f  each of t h e  two f a c t o r s  i n  ( 2 7 )  i s  z e r o ,  t h e  r e q u i r e d  c o n d i t i o n  (26)  

i s  s a t i s f i e d .  Equat ions ( 2 5 )  and ( 2 7 )  are s a t i s f i e d  by t h e  f o l l o w i n g  s e t  

of e q u a t i o n s :  

I f  D i s  independent  of t i m e ,  t h e  l as t  e q u a t i o n  (31 )  s t a t e s  t h a t  W i s  

conserved a l o n g  t h e  r a y  t r a j e c t o r y .  The t h i r d  e q u a t i o n  (30) g i v e s  t h e  re la-  

t i o n  between time t and p a r a m e t e r ' t .  

The above se t  of e q u a t i o n s  c l e a r l y  i n d i c a t e s  a n  analogy between t h e  

+ 
r a y  theo ry  and c l a s s i c a l  mechanics.  The wave v e c t o r  k and t h e  f r equency  LLJ 

of a r a y  p l a y  t h e  r o l e s  of t h e  momentum and t h e  energy of a p a r t i c l e ,  r e s p e c -  

t i v e l y .  However, t h i s  analogy does n o t  e n a b l e  us  t o  f o r m u l a t e  t h e  r a y  t h e o r y  

i n  Hamiltonian form. Th i s  i s  because  t h e  motion of a r a y  co r re sponds  t o  t h a t  

of a p a r t i c l e  of z e r o  mass,  and hence i t  i s  expec ted  t h a t  t h e  Lagrangian f o r  

t h e  r a y  is i d e n t i c a l l y  z e r o .  I n  t h e  end of t h e  f o l l o w i n g  S e c t i o n  w e  w i l l  show 

t h a t  t h e  Lagrangian indeed v a n i s h e s .  

However, when Fermat's p r i n c i p l e  i s  v a l i d  t h e  problem c a n  be f o r m u l a t e d  

i n  Hamiltonian form,  Hence w e  now examine unde r  what c o n d i t i o n s  F e r m a t ' s  

p r i n c i p l e  i s  c o n s i s t e n t  ,with o u r  f o r m u l a t i o n .  

. 
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3 . 3 .  F e r m a t ' s  p r i n c i p l e  

Weinberg (1962) showed t h a t  when the e i k o n a l  i s  s t a t i o n a r y ,  t h e  p r i n c i p l e  

of  least t i m e ,  i . e . ,  Fe rma t ' s  p r i n c i p l e ,  h o l d s  i f  t h e  d i s p e r s i o n  r e l a t i o n  i s  

homogeneous i n  k andrg .  
-9 

I n  t h i s  S e c t i o n  w e  d e r i v e  t h e  same c o n d i t i o n  by pu r -  

s u i n g  t h e  f o r m u l a t i o n  i n  t h e  p reced ing  Sec t ion .  

I n  c lass ical  mechanics t h e  p r i n c i p l e  of least a c t i o n  ho lds  when t h e  

Hamil tonian  i s  conserved .  We l i m i t  ou r se lves  t o  t h e  case when t h e  f requency  

0 i s  conserved  a l o n g  t h e  p a t h ,  t h a t  i s ,  D i s  conserved  a long  t h e  p a t h .  

We f i r s t  d e f i n e  t h e  a c t i o n  A f o r  t he  r a y  by t h e  i n t e g r a l  

where t h e  d o t  means, as b e f o r e ,  d i f f e r e n t i a t i o n  w i t h  t .  

Next,  w e  c a l c u l a t e  t h e  v a r i a t i o n  A A ,  where t h e  A - v a r i a t i o n  d i f f e r s  

f rom t h e  & - v a r i a t i o n  appea r ing  i n  v i r t u a l  d i s p l a c e m e n t ;  i n  t h e  l a t t e r ,  t i m e  

i s  k e p t  unchanged, whereas  i n  t h e  former  t h e  p r o c e s s  i n v o l v e s  a change d t  (see, 

e . g . ,  G o l d s t e i n ,  1951) .  F o r  any f u n c t i o n  f of 3 and t ,  t h e  A - v a r i a t i o n  of f 

i s  

I n  p a r t i c u l a r ,  

Applying t h e  A - v a r i a t i o n  t o  (32) we have 

6 ( k - r l d t  + k - r A t  (35) 
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The f i r s t  i n t e g r a l  c a n  b e  c a l c u l a t e d  i n  t h e  f o l l o w i n g  way: 

H r w e  u d t h  f t t h a t  t h e  o r d e r  of  t h e  6 -  and d o t - o p e r a t i o n  c a n  b 

i n t e r c h a n g e d ,  and p a r t i a l  i n t e g r a t i o n  was performed on t h e  second i n t e g r a l  

on t h e  r i g h t - h a n d  s i d e  of t h e  f i r s t  l i n e ,  To o b t a i n  t h e  last  r e s u l t  w e  

used ( 3 4 )  and t h e  c o n d i t i o n  t h a t  A ? =  0 a t  t h e  end p o i n t s .  

Thus (35) reduces  t o  

Using ( 2 2 ) ,  (23)  , (28) , ( 2 9 ) ,  and (301, 

as f o l l o w s :  

t h e  i n t e g r a n d  can  b e  t ransformed 

Thus w e  have proved t h a t  

A A =  0 
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Namely, in our system the principle of least action holds if the action is 

defined by (32). 

for 0 A given in (35). If 

Having proved this principle we go back to the expression 

+ b +  

k-r = constant 4 0 

then (35) reduces to 

A (t2 - tl) = 0 

which implies the principle of least time, or Fermat's principle. 

condition ( 3 6 )  can be rewritten as follows: 

The 

A sufficient condition for (37)  to hold is that D is homogeneous in 
-3 

k and UJ , because if D is homogeneous in k' and w , i.e., if 

Euler's homogeneity equation becomes 

--* k.- dD +wc)D  = n D = O  
b (u 

Thus the constant in (37) takes the value of W .  

The homogeneity equation (38) can be transformed into the form 

which implies the equality of the group and phase velocities. 
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It is pointed out here that the action (32) is the same as the 

eikonal S in Weinberg's formulation, and that the principle of least action 

derived here is equivalent to the principle of stationary S in Weinberg's 

e i kona 1 theory . 
/ 

For the Alfven compressional mode the dispersion relation is homogeneous 
+ in k and CC) , and hence Fermat's principle holds. 

this mode the group velocity is equal to the phase velocity. However, for 

the shear mode the dispersion relation is not homogeneous in the components 

of k, and thus Fermat's principle does not hold. 

(1962), the application of Fermat's principle by Francis, Green and Dessler 

(1959) is justified. 

A s  a matter of fact, for 

4 

As has been noted by Weinberg 

In concluding this Section a remark is made on the Lagrangian. In 

classical mechanics the Lagrangian L is related to the Hamiltonian by 

where p' is the momentum. 

If we define the Lagrangian for the ray by 

then from ( 3 6 )  our Lagrangian is identically zero, confirming our 

expectation expressed in Section 3 . 2 .  Thus the ray theory cannot be 

constructed in Hamiltonian form using the Lagrangian defined above. 
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3.4. A ray theory for modes with isotropic phase velocity 

In this and the following Sections we discuss the case in which the 

phase velocity is isotropic. We specifically study propagation of a hydro- 

magnetic ray. For the Alfv6n compressional mode the group velocity is the 

same as the phase velocity. Hence we simply refer to these velocities by 

the single term the Alfvgn velocity. 

Fermat's principle states that the motion of a ray from a point PI 

to'another point P2 is such that the variation of the line integral ds/V 1: L 
for fixed P1 and P2  is zero, i.e., 

6 1 I 2  ds/V(r,B,d) = 0 (39)  

1 
where V(r,Q,d) is the Alfvgn velocity. 

system (r,0,d) in this and following Sections; when we refer to the 

magnetosphere the origin of the spherical coordinate system is taken to 

coincide with the earth's center. In the preceding Sections 0 was the 

angle which k makes with the magnetic field, but in the rest of the paper 

0 is the polar angle. 

We use a spherical coordinate 

=+ 

We write ( 3 9 )  in the form: 

where t 

dot means differentiation with respect to time t. 

and t2 are the times when the ray is at P I  and P 2 ,  and where the 1 

Equation (40 )  is formally the same as the variation equation expressing 



- 32 - 

Hamilton’s principle for a system whose Lagrangian is equal to the integrand 

in (40). Thus we take the integrand of (40) as the Lagrangian of our system, 

and define the generalized momenta conjugate to r, 0 ,  d by 

I 

(k = 1, 2, 3 )  

I where it is understood that the subscript k refers to r, 0 ,  d components 

and that qk ( k  = 1, 2, 3 )  represnets r, 0 ,  d ,  respectively. 

The Hamiltonian H of the system is 

Then the canonical equations can readily be formed. 

Kenschitzki ( 1964) proceeded to integrath the canonical equations numerically. 

Stegelmann and von 

3.5. Axially symmetric case: allowed and forbidden repions for a ray 

I It is obvious that if the Alfvgn velocity is independent of d ,  the 

Hamiltonian does not contain d explicity; thus, d is a cyclic coordinate. 

It follows that the conjugate momentum pd From 

the definition of pd we immdiately obtain the equation 

is a constant of motion. 

I This equation, of course, is the canonical equation for d with pd constant. 

Since d = V db/ds, where s is path length along the trajectory, (41) can 

be written as follows: 
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(R2/V) dQ/ds  = O( 

where 

R =  r s i n 0  

and where o( i s  a c o n s t a n t .  

We d e f i n e  an  a n g l e x  by t h e  e q u a t i o n  

42) 

( 4 3 )  

R dd /ds  = s i n  X ( 44) 

so  t h a t  X i s  t h e  a n g l e  between t h e  t angen t  t o  t h e  r a y  i n  t h e  d i r e c t i o n  of 

i t s  motion and t h e  mer id ian  p l a n e .  

t aken  such t h a t x  i s  p o s i t i v e  when Q i n c r e a s e s  as t h e  r ay  advances .  

8 i l l u s t r a t e s  t h e  a n g l e x  . 

As can be seen  i n  (44) t h e  s i g n  o f X  i s  

F i g u r e  

U s i n g X  , (42) reduces  t o  

F o r  r a y s  be longing  t o  O( , (45)  g i v e s  t h e  a n g l e  X a s  a f u n c t i o n  of r and 8. 

S i n c e  -1 6 s i n X  < 1, w e  have t h e  r e l a t i o n  

-1 < i X V / R  ,< 1 ( 46) 

Thus, g iven  t h e  v a l u e  of o(, ( 4 6 )  d e f i n e s  t h e  "allowed" r e g i o n  f o r  t h e  

r a y s  be longing  to@. Areas o u t s i d e  t h e  allowed r e g i o n  are f o r b i d d e n  t o  t h e s e  

r a y s .  

The c o n s t a n t  o( can be taken  as t h e  i n i t i a l  c o n d i t i o n  s p e c i f i e d  by 

ro, Q O ,  and x o :  
C( = (Ro/Vo)  s i n  X o  (47) 
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where Ro and Vo are  t h e  v a l u e s  of R and V a t  ro, 8,. 

I t  should b e  noted  t h a t  t h e  a n g l e X o  d o e s  n o t  s p e c i f y  t h e  i n i t i a l  

d i r e c t i o n  of a r a y  c o m p l e t e l y ,  e x c e p t  i n  t h e  e q u a t o r i a l  p l a n e .  To s p e c i f y  

the. i n i t i a l  d i r e c t i o n  of a r a y  comple t e ly  one  more a n g l e  i s  needed ( S e c t i o n  

3 . 8 )  ; however, w e  o n l y  need xo f o r  t h e  t i m e  be ing .  

When the i n i t i a l  c o n d i t i o n s  r o ,  Q0, and xo are g i v e n ,  t h e  a l lowed and 

f o r b i d d e n  r e g i o n s  c a n  be mapped o u t  u s i n g  ( 4 6 )  w i t h o u t  i n t e g r a t i n g  t h e  equa-  

t i o n s  of motion. 

The problem i s  f o r m a l l y  i d e n t i c a l  wi th  t h a t  i n  S tgrmer ' s  work on t h e  

motion of a charged  p a r t i c l e  i n  a d i p o l e  magnet ic  f i e l d  ( S t s r m e r ,  1955).  I n  

S t c r m e r ' s  problem a l s o  t h e  Hamil tonian does  n o t  c o n t a i n  d e x p l i c i t l y .  

The meaning of  ( 4 4 )  becomes more e x p l i c i t  i f  w e  l i m i t  o u r s e l v e s  t o  r a y s  

c o n f i n e d  i n  t h e  e q u a t o r i a l  p l a n e .  

r a l o n e ,  a n d 3  i s  t h e  a n g l e  which t h e  t a n g e n t  t o  t h e  r a y  t r a j e c t o r y  makes w i t h  

t h e  r a d i a l  d i r e c t i o n .  L e t X  be measured p o s i t i v e l y  from t h e  inward r a d i a l  

d i r e c t i o n  toward t h e  d i r e c t i o n  of i n c r e a s i n g  Q (which i s  t a k e n  t o  be eas tward)  

and l e t  X v a r y  from 

w i t h  /q>%r are outbound,  and w h e n x = + % r ,  a r a y  i s  t a n g e n t  t o  t h e  c i r c l e  of 

r a d i u s  r e  

The Alfv6n v e l o c i t y  V i s  now a f u n c t i o n  of 

- 7T t o  7 ; t h u s  r a y s  w i t h  -%TCJC%Sr are  inbound and t h o s e  

The a n g l e  a t  r i s  r e l a t e d  t o  i t s  i n i t i a l  v a l u e  X o  a t  t h e  p o i n t  s o u r c e  

a t  ro by 

s i n X  = ( ro / r )  ( V / V o )  s i n  X o  

I f  Y(r) i s  a maximum a t  r = rm and i s  a monotonica l ly  d e c r e a s i n g  f u n c t i o n  

cf r w i t h  i n c r e a s i n g  r ,  t h e n  f o r  ro 7 r 7 rm, t h e  inequa l i ty lX1)  1x4 always 
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holds. This simply implies the obvious result that the ray is bent away 

from the region of high Alfvgn velocity. 

The Alfvgn velocity is a maximum at several thousand kilometers altitude 

and decreases both above and below this level (Dessler, 1958). The Alfv6n 

velocity increases again near the F2 peak. but we are not concerned here 

with the propagation of hydromagnetic waves in the ionosphere. We only 

consider the ray trajectories above 600 km altitude. 

It is of interest to find the critical initial angle ,c’o,c at which an 

inbound ray from a point source at a great distance is reflected away from 

the earth at the region (r = rm) of the AlfvLn velocity maximum. 

critical initial angle can be determined by 

This 

where Vm is the value of V at rm. 

For a rough estimate, taking ro = 60.000 km, r m =  10.000 kn, and Vo = 

400 km/sec. Vm = 2,000 km/sec. we obtain I sin -Xo,c I 
is about 1.9O. 

in the magnetosphere, but ,to,c is not likely to be changed greatly as more 

accurate information on the AlfvLn velocity distribution becomes available. 

= 1/30. and hence lAo,c( 

There are uncertainties in the distribution of Alfvgn velocity 
9, 

3 . 6 .  A further remark on ray tracing in the equatorial plane 

In Section 3.5, time t was used for the variable in the variation 

equation. However, any one of the three coordinates can be used as the 

variable in place of t. 
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If we choose b as the variable, and if we confine ourselves t o  the 

equatorial plane, the integrand L in the variation equation reduces to 

where the prime represents differentiation with respect to d .  

Considering this function as the Lagrangian, Lagrange's equation of 

motion is 

This is the equation used by Francis, Green and Dessler (1959). 

Denoting the momentum conjugate to r by p, the Hamiltonian for the 

system is given by 

H = p r ' - L  

where 

p = b ~ /  3rl 

It is understood that H is expressed as a function of r and p. Then 

the Hamiltonian does not contain d explicitly. Thus the Hamiltonian is a 

constant of motion. We immediately arrive at the equation: 

r' __ L - L = constant 
b r' 

This is the equation which Francis, Green and Dessler (1959) derived 

mathematically and used for their calculation of the transit time f o r  

the ray, and which Dessler, Francis, and Parker (1960) used for their two 

dimensional ray tracing. 
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3 . 7 .  Hydromagnetic r a y s  i n  t h e  magnetosphere:  a x i a l l y  symmetric case 

Using t h e  method d e s c r i b e d  i n  S e c t i o n  3.5,  w e  w i l l  now i n v e s t i g a t e  

t h e  a c c e s s i b i l i t y  of hydromagnet ic  r a y s  o r i g i n a t i n g  from t h e  magnetospher ic  

boundary t o  t h e  v i c i n i t y  o f  t h e  e a r t h .  We u s e  t h e  same model magnetosphere 

as t h e  one p r e s e n t e d  i n  S e c t i o n  2 .5 ;  f o r  t h e  magnet ic  f i e l d  w e  approximate  

t h e  geomagnet ic  f i e l d  by a c e n t e r e d  d i p o l e .  

A s  was shown i n  S e c t i o n  3.5, when t h e  p o s i t i o n  (ro,Qo) of t h e  p o i n t  

s o u r c e  and t h e  i n i t i a l  v a l u e  of xof t h e  ray are s p e c i f i e d ,  w e  can d e t e r m i n e  

t h e  a l lowed and f o r b i d d e n  r e g i o n s  by ( 4 6 )  and ( 4 7 ) .  

We p l a c e  t h e  p o i n t  s o u r c e  a t  t h e  d i s t a n c e  of 10 e a r t h - r a d i i  f rom t h e  e a r t h ' s  

c e n t e r ,  i . e . ,  ro = log, where g i s  t h e  e a r t h ' s  r a d i u s ,  and w e  d e t e r m i n e  a l lowed 

and f o r b i d d e d  r e g i o n s  f o r  €3, = 30°, 60°,  and 90'; t h e  last  v a l u e  of 8, p l a c e s  

t h e  s o u r c e  on t h e  e q u a t o r i a l  p l ane .  

T y p i c a l  d iagrams showing t h e  a l lowed and f o r b i d d e n  r e g i o n s  are p r e s e n t e d  

i n  F i g u r e  9 .  I n  t h e  F i g u r e ,  f o r b i d d e n  r eg ions  are i n d i c a t e d  by p a t c h e s  and 

t h e  open areas r e p r e s e n t  allowed r e g i o n s .  The pa tched  c i r c l e  i n  t h e  c e n t e r  

r e p r e s e n t s  t h e  e a r t h  and  t h e  p o s i t i o n  of t h e  p o i n t  s o u r c e  can  be  a t  any of t h e  

f o u r  a r rows  on t h e  great c i r c l e  whose r ad ius  is t e n  t i m e s  t h a t  of t h e  e a r t h .  

All t h e  d iagrams are symmetric w i t h  r e s p e c t  t o  t h e  e q u a t o r ,  and t h e  t h r e e  

d imens iona l  a l lowed (o r  f o r b i d d e n )  r e g i o n  can be  o b t a i n e d  by r o t a t i n g  each  

d iagram a b o u t  t h e  v e r t i c a l  a x i s  th rough the  c e n t e r ,  namely,  t h e  d i p o l e  a x i s .  

Fo r  v e r y  small v a l u e s  of x 0  ( w e l l  below lo, s a y ) ,  t h a t  i s ,  when t h e  

i n i t i a l  d i r e c t i o n  o f  t h e  r a y  d e v i a t e s  from t h e  mer id i an  p l a n e  o n l y  by a small 

a n g l e ,  t h e  r a y  can  r e a c h  t h e  e a r t h ' s  v i c i n i t y  excep t  d i r e c t l y  above t h e  p o l e s .  
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A s  j c 0  i n c r e a s e s  t h e  two f o r b i d d e n  r e g i o n s  around t h e  a x i s ,  one i n  each  

hemisphere,  become l a r g e r  and ex tend  t o  lower l a t i t u d e s  n e a r  t h e  a l t i t u d e  

of t h e  Alfven v e l o c i t y  maximum. 

t h e  t i p s  of t h e  n o r t h e r n  and s o u t h e r n  f o r b i d d e n  r e g i o n s  touch  each  o t h e r  

on t h e  e q u a t o r i a l  p l a n e .  

and t h e  a l t i t u d e  a t  which t h e  j o i n i n g  of t h e  two f o r b i d d e n  r e g i o n s  t a k e s  

p l a c e  on t h e  e q u a t o r i a l  p l a n e ,  b u t  t h i s  i n n e r  a l lowed  r e g i o n  i s  n o t  a c c e s s i b l e  

t o  t h e  ray coming from o u t s i d e .  

/ When & r e a c h e s  some c r i t i c a l  v a l u e ,  

The re  i s  a n  al lowed r e g i o n  between t h e  i o n o s p h e r e  

When X0 exceeds t h e  c r i t i c a l  v a l u e ,  t h e  e a r t h  i s  comple t e ly  immersed 

i n  a fo rb idden  r e g i o n  and t h e  o u t e r  a l lowed  r e g i o n  i s  more and more pushed 

outward,  and f i n a l l y ,  as X0 t e n d s  t o  90' i t s  i n n e r  s u r f a c e  approaches  some 

l i m i t i n g  s u r f a c e  which i n t e r s e c t s  t h e  l a r g e  s p h e r e  (of r a d i u s  ro) a t  0 = 00 

and 8 = 

t o  a c i r c l e  of r a d i u s  ro on t h e  e q u a t o r i a l  p l a n e .  

-eoo When 0, i s  90°, t h e  al lowed r e g i o n  f o r  Jo = 90° d e g e n e r a t e s  

The c r i t i c a l  v a l u e  of jco becomes smaller as 8, i n c r e a s e s ;  f o r  00 = 30°, 

60°, and 90°, t h e  c r i t i c a l  X o  i s  3 . 3 0 ,  1.40, and 0 .9 ' ,  r e s p e c t i v e l y .  

F i g u r e  9 t h e  diagrams f o r  t h e s e  c r i t i c a l  c i r c u m s t a n c e s  are i n c l u d e d .  

I n  

F o r  X o  = loo ,  30°, 60°, and 90° t h e  f o r b i d d e n  r e g i o n s  are i n d i c a t e d  

i n  one diagram f o r  e a c h  8,. 

We conclude t h a t  t h e  e a r t h  and i t s  immediate v i c i n i t y  are  remarkably 

w e l l  p r o t e c t e d  fpom t h e  hydromagnetic r a y s  g e n e r a t e d  i n  t h e  o u t e r  r e g i o n s  

of t h e  magnetosphere.  

Kensch i t zk i  (1964) w i t h  t h e i r  r e s u l t s  f r m  numer ica l  r a y  t r a c i n g ,  

T h i s  f e a t u r e  h a s  been shown by Stegelmann and von 
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I 3.8. Hydromagnetic rays in the distorted magnetosphere: axially asymmetric 
i 

case 

The magnetosphere is contained in a cavity in the streaming solar plasma 

(Cahill and Amazeen, 1963; Ness et al., 1964). A number of workers have 

attempted to theoretically determine the shape of the boundary of the mag- 

I netosphere (for reference, see a review paper by Beard, 1964). 
I 

In this Section we only briefly discuss the effect of the distortion of 

the magnetosphere on the propagation of hydromagnetic waves. 

In the absence of symmetry we have to write down the equations of 

motion and solve them by some numerical method. 

For the sake of convenience we multiply the Hamiltonian given in Section 

3.4 by the factor %. With this Hamiltonian the canonical equations are 

2 r = \I p, 

i, = ~2 pe/r 2 

i = v 2 pg/(r2 sin 2 Q) 

io= - (LIV) V/ B Q + (V 2 2  /r 

br= -(LIV) a VI 3 r + (V 2 3  /r (pg 2 + pg2/sin2Q) 

p62 cos Q / sin 3 0 

( 48) 

These equations are not completely independent. The Hamiltonian of 

the system is identically zero, and we have 

Using (49) one of the variables can be eliminated from the set of 

equations (48). But it is found convenient touse (49) as a check in the 

numerical ray tracing calculation. 
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We d e f i n e  t h e  d i r e c t i o n  of t h e  t a n g e n t  t o  t h e  r a y  t r a j e c t o r y  a t  a p o i n t  

P by two a n g l e s x  and '7 . i s  t h e  same as t h a t  d e f i n e d  i n  t h e  

preceding  S e c t i o n ,  a n d ?  i s  t h e  a n g l e  which t h e  t a n g e n t  t o  t h e  p r o j e c t i o n  

of  t h e  t r a j e c t o r y  o n t o  t h e  mer id i an  p l a n e  makes w i t h  t h e  r a d i a l  d i r e c t i o n ,  

The a n g l e  

namely , 

s i n x  = ( d h / d s )  r s i n  8 

c o s  = - ( d r / d s )  sec 

and 
XO 

We d e n o t e  t h e  i n i t i a l  v a l u e s  of and '7 a t  ( rd ,  Qo, do) by 

lo, r e s p e c t i v e l y .  

The i n i t i a l  v a l u e s  of t h e  momenta c a n  be w r i t t e n  i n  terms of rop  Q,, 

do,%,, v 0 ,  and V( ro ,  eo ,  dolo 

F o r  t h e  deformed geomagnetic f i e l d  w e  t a k e  t h e  model proposed by Mead 

(1964) .  

f i e l d  due t o  t h e  deformat ion  w e  t a k e  

F o r  t h e  d i p o l e  f i e l d  w e  t a k e  gy = - 0 . 3 1  g a u s s ,  and f o r  t h e  a d d i t i o n a l  

= -0.2515 /rb3 g a u s s  

4 -' = 0.1215 / rb  g a u s s  
g2 

where g ' s  are well-known Gauss c o e f f i c i e n t s  i n  t h e  s p h e r i c a l  harmonic expan. 

s i o n  of t h e  magnet ic  f i e l d ,  and where rb i s  t h e  d i s t a n c e ,  measured i n  e a r t h -  

r a d i i ,  from t h e  e a r t h ' s  c e n t e r  t o  t h e  boundary of t h e  magnetosphere a t  t h e  

s u b s o l a r  p o i n t .  Here r i s  t a k e n  t o  b e  10 e a r t h - r a d i i .  b 

A computer program h a s  been developed  t o  i n t e g r a t e  t h e  e q u a t i o n s  of motion 

(48)  w i t h  r o ,  €lo,  do,  x0, and 

t h e  Runge-Kutta method was u s e d .  

?o as t h e  i n i t i a l  c o n d i t i o n s ?  F o r  i n t e g r a t i o n  
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In this paper, trajectories on the equatorial plane alone are discussed. 

Figure 10 shows typical examples of the trajectories in the equatorial 

plane. The position of the point source is place at 10 earth-radii regard- 

less of the longitude. This assumption is made because the location of the 

magnetospheric boundary is not well known on the dark side of the magnetosphere, 

and because with a fixed ro we can compare trajectories starting from sources 

at different longitudes more directly. Here longitude, Q, is measured east- 

ward from the midnight meridian; in Figure 10 the midnight meridian is 

towards the left and the longitude increases counterclockwise. 

In the lower half of Figure 10, trajectories starting at do = Oo, 45O, 

135O, and 180°, all with x o  = 0 (i.e., rays directed initially towards the 

origin) are shown. In the upper half, trajectories with their initial posi- 

tion at do = 90° with X o  = 0, lo, 3 O ,  4 O ,  5O, 6 O ,  and 7 O  are drawn. 

The effect of the distortion of the magnetosphere on the ray trajectories 

can be described by saying that hydromagnetic rays tend to be 'blown' towards 

the direction away from the sun. 

compressed on the sunlit side of the magnetosphere than on its dark side, thus 

increasing the Alfvgn velocity in the region facing the sun. 

This is because the magnetic field is more 

However, the results presented in this Section should be interpreted 

with caution. Although the distortion of the geomagnetic field is taken into 

account, possible changes in the plasma density distribution associated with 

the distortion are not consideredlhere. Appreciable asymmetry may be introduced 

in the plasma density, but no observational data are available as yet that in- 

dicate such an effect. 
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The magnet ic  f i e l d  c o n f i g u r a t i o n  on t h e  d a r k  s i d e  of t h e  magnetosphere 

h a s  a l s o  n o t  as y e t  been e s t a b l i s h e d .  S i n c e  t h e  t r a j e c t o r i e s  are s e n s i t i v e  

t o  l a r g e  scale magnetic f i e l d  p a t t e r n s ,  t h e  a c t u a l  t r a j e c t o r i e s  i n  t h e  mag- 

ne tosphe re  may be d i f f e r e n t  from t h o s e  shown i n  t h i s  p a p e r .  Our pu rpose  i s  

t o  demons t r a t e  q u a l i t a t i v e  c h a r a c t e r i s t i c s  of r a y  t r a j e c t o r i e s  i n  t h e  mag- 

ne tosphe re .  However, f o r  t h e  model used i n  t h i s  S e c t i o n  t h e  c a l c u l a t i o n s  

are  made as a c c u r a t e l y  as p o s s i b l e  w i t h i n  t h e  p r a c t i c a l  l i m i t a t i o n s .  

1t.i.s observed i n  F i g u r e  10 t h a t  i f  t h e  p o i n t  s o u r c e  i s  n o t  i n  t h e  

0 
mer id ian  c o n t a i n i n g  t h e  sun ( i . e . ,  6, = Oo o r  180 1 ,  t h e  r a y  d i r e c t e d  

i n i t i a l l y  towards t h e  o r i g i n  does n o t  r e a c h  t h e  e a r t h .  Fo r  t h e  r a y  t o  

r each  t h e  e a r t h  i t  m u s t  s t a r t  w i t h  A. s l i g h t l y  g r e a t e r  t han  0 ,  I f  jco 

becomes too  l a r g e ,  t h e  r a y  i s  b e n t  back a t  t h e  r e g i o n  of Alfven v e l o c i t y  

maximum. Th i s  c i r c u m s t a n c e  i s  shown f o r  bo = 90 i n  t h e  upper h a l f  of 

F i g u r e  10. 

t h e  back of t h e  magnetosphere,  

t o  p e n e t r a t e  i n t o  t h e  immediate v i c i n i t y  of  t h e  e a r t h ,  and t h i s  c o n d i t i o n  

p r e v a i l s  t i l l  xo r e a c h e s  a v a l u e  a l i t t l e  less t h a n  6 . 5 O .  

l a t te r  a n g l e  t h e  r a y  i s  a g a i n  r e f l e c t e d  away from t h e  e a r t h  a t  t h e  r e g i o n  

of  Alfvgn v e l o c i t y  maximum. 

f 

0 

A t  t h i s  do ,  r a y s  w i t h  x0 = 3.0' and less are Yblown" cowards 
0 

A t  xo between 3.0 and 3 . 2 O  t h e  r a y  beg ins  

Beyond t h i s  

I n  F i g u r e  10 t h e  t i m e  i n  seconds i s  i n d i c a t e d  a l o n g  t h e  t r a j e c t o r i e s  

I t  i s  of i n t e r e s t  t o  compare t h e  t r a n s i t  t i m e  from ro t o  some a l t i t u d e  n e a r  

t h e  earth f o r  t h e  t r a j e c t o r y  i n  t h e  midnight  m e r i d i a n  w i t h  t h e  c o r r e s p o n d i n g  

t r a n s i t  t i m e  f o r  t h e  t r a j e c t o r y  i n  t h e  noon m e r i d i a n .  I n  F i g u r e  10 the 

a l t i t u d e  of t h e  p o i n t  marked 95 seconds i n  t h e  noon mer id i an  and t h a t  of 
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the point marked 129 seconds in the midnight meridian are within 45 km 

from each other. The mean of the two altitudes is 1,363 km above the 

earth's surface. Thus the difference in the transit time from 10 earth- 

radii to this altitude is about 34 seconds. 

However, as has already been mentioned, caution should be exercised 

in applying this result to any actual events that occur in the magnetosphere. 

In concluding the discussions of the ray theory the following remarks 

are made. The hydromagnetic approximation is based on the condition that 

c&gfii. 

is good below 10 c/sec (Figure 4 ) .  There is another limitation to the 

ray theory, namely, that the wavelength be short compared with the dimension 

under consideration. We put this condition in the formW>3V/L, where L is 

the typical scale length. If we take L to be the smallest value of the 

radius of curvature for the ray trajectories, then the minimum frequency 

may be set at about 1 c/sec. Thus, roughly speaking, the ray theory is 

applicable to propagation of hydromagnetic waves of frequencies about 1 

to 10 c/sec. 

Thus for the most part of the magnetosphere this approximation 

A more extensive study of the ray trajectories in the magnetosphere 

and their physical implications will be reported later. For instance, the 

efficiency of energy transfer from solar winds to the ionosphere via hydro- 

magnetic waves is considerably reduced by the limited accessibility of the 

hydromagnetic waves to the immediate vicinity of the earth. 

A theoretical study of geometrical hydromagnetics based on a classical 

hydromagnetic fluid has been made by Bazer and Hurley (1963); their paper 

includes comprehensive reference to the literature on the subject. 
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4 .  Conc lusions 

We reviewed the possible modes of waves in a two-component cold plasma 

using the Clemmow-Mullaly-Allis diagram. A systematic method of labeling 

the modes was explained. 

The modes relevant to propagation of ULF and V U  waves in the regions 

of plasma parameter space representing the conditions in the magnetosphere 

were reviewed. For frequencies below the ion cyclotron frequency there are 

two modes: the fast mode 

tion along the magnetic field and with phase velocity dependent on the magnetic 

field for propagation across it, and the slow mode with left-handed circular 

polarization for progagation along the magnetic field. Waves in the latter 

mode do not propagate across the magnetic field. 

frequency, only the fast mode represents propagating wave, and above the 

lower hybrid resonance frequency this mode becomes the whistler mode. 

with right-handed circular polarization for propaga 

Above the ion cyclotron 

Reversal of polarization ( in the electric field) depending upon the 

direction of phase propagation with reference to the direction of the magnetic 

field was discussed. We concluded that there is no such reversal in polariza- 

tion in ULF and VLF waves in the magnetosphere. 

The hydromagnetic approximation was examined and its relation to the 

more exact treatment was indicated. 

In this paper we only discussed propagation of waves in a collisionless 

plasma. When the thermal motions of electrons and ions are included, the 

waves found in a cold plasma are modified. The modifications are often 

only slight, but in a hot plasma new modes are introduced which have no 
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c o u n t e r p a r t  i n  a c o l d  plasma.  There  are two such  modes i n  a r e l a t i v e l y  low 

f t e q u e n c y  range. 

waves.  These waves were n o t  d i s c u s s e d  i n  t h i s  p a p e r ;  the r e a d e r  is r e f e r r e d  t o  

d i s c u s s d o n s  on t h e s e  waves made, f o r  i n s t a n c e ,  by S p i t z e r  (19561,  Bernstein 

(1958) and S t i x  (1962) .  

They &re i o n  a c o u s t i c  waves and e l e c t r o s t a t i c  ion c y c l d t r o n  

I n  t h e  la t ter  h a l f  of t h i s  pape r ,  w e  changed t h e  l i n e  of approach ,  and 

fo rmula t ed  a r a y  t h e o r y .  The e q u a t i o n s  of  motion of a r a y  were d e r i v e d  from 

a s imple  p o s t u l a t e  t h a t  8 r a y  moves w i t h  t h e  group v e l o c i t y .  The a c t i o n  of 

t h e  r a y  was d e f i n e d  i n  ana iogy  w i t h  c l a s s i c a l  mechanics ,  and t h e  p r i n c i p l e  

of least  a c t i o n  was proved .  I t  WAS shown t h a t  t h e  p r i n c i p l e  of least  a c t i o n  

t a k e s  t h e  form of t h e  p r l h c i p l e  of least time when t h e  d i s p e r s i o n  r e l a t i o n  

is homogeneous i n  t h e  wave v e c t o r  k and t h e  f r equency  0. 
+ 

F o r  t h e  case i n  which t h e  wave-normal s u r f a c e  is s p h e r i c a l ,  a r a y  t h e o r y  

was fo rmula t ed  i n  Hami l tonian  form.  I n  t h e  a x i a l l y  symmetric case t h e  g e n e r a l i z e d  

momentum c o n j u g a t e  t o  t h e  az imutha l  c o o r d i n a t e  becomes a c o n s t a n t  of  motion.  

Using t h i s  r e l a t i o n ,  a l lowed and f o r b i d d e n  r eg ions  were d e f i n e d  t o r  a hydro-  

magnet ic  r a y  i n  t h e  magnetosphere w i t h  t h e  magnetic f i e l d  approximated by t h a t  

of :a dipole. 

boundary can r e a c h  t h e  ionosphe re  o n l y  i f  t he  d e v i a t i o n  of t h e  I n i t i a l  d i r e c t i o n  

of the  r a y  from t h e  mer id i an  p l a n e  is small. 

I t  was shown t h a t  a r a y  o r i g i n a t i n g  from t h e  magnetospher ic  

When t h e  d i s t o r t i o n  of t h e  geomagnet ic  f i e l d  due  t o  s o l a r  wind i s  t a k e n  

i n t o  a c c o u n t ,  t h e  r a y  t r a j e c t o r i e s  i n  t h e  magnetosphere are a p p r e c i a b l y  altered 

from t h o s e  i n  a d i p o l e  f i e l d .  

I n  s p i t e  of t h e  l i m i t a t i o n s  i n  i t s  a p p l i c a t i o n  t h e  hydromagnet ic  r a y  
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theory for the magnetosphere should provide a guide towards a more complete 

understanding of propagation of hydromagnetic waves in the magnetosphere. 
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Figures 

The CMA diagram for a two-component cold plasma, showing the 

topological characteristics of the wave-normal surfaces. 

The electron density distribution in the model magnetosphere 

used in this paper. 

The electron cyclotron frequency and the electron plasma 

frequency as functions of distance from the earth's center. 

The CMA diagram f o r  ULF and VLF waves in the model magnetosphere. 

Areas in the plasma parameter plane in which the polarization 

reversal can occur at 8 satisfying (14). 

Illustrating the solutions to RL + PS - 2s' = 0. 

The modes in which polarization reversal occurs at 8 

satisfying (14). 

Illustrating the aogle x .  
Allowed arid fcrbi3dm regions for a hydromagnetic ray in the 

magnetosphere with a dipole field. 

l7< r L 6 U L e  m.- 10. X??uatrating ray trajectories in the  equatorial plane in the 

distorted magnetosphere. 
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